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On the structure of the paired states 

V. N. FOMENKO 
Physical Research Institute, Leningrad State University, Leningrad, U.S.S.R. 
MS.  receiz'ed 2nd March 1970 

Abstract. In this paper the quasi-particle structure of the ground state of the 
pairing Hamiltonian is analysed for the Ni isotopes and zOsPb. The particle- 
number projected Bardeen-Cooper-Schrieffer states are used for describing 
the states under consideration. The quasi-particle amplitudes are evaluated 
in the saddle-point approximation. The amplitudes with the number of quasi- 
particles a multiple of four are shown to be comparable with the quasi-particle 
vacuum amplitude. 

The  value of the other quasi-particle amplitudes depends essentially on the 
system considered. In particular, the two-quasi-particle component can some- 
times be comparable with the four-quasi-particle one (zo6Pb). 

On the basis of the data obtained it is concluded that the random phase 
approximation ground-state wave function with small admixture of the quasi- 
particle components, the components with the odd number of quasi-particle 
pairs being neglected completely, is rather poor. 

1. Introduction 
In  this paper we consider the quasi-particle structure of the ground state of the 

pairing model (Belyaev 1959). Recently, a method for projecting the states of the 
Bardeen-Cooper-Schrieffer model (Bardeen et al. 1957-to be referred to as BCS) in 
the quasi-particle representation has been suggested (Fomenko 1970). Now it became 
possible to compare directly the ground-state wave functions of the pairing Hamil- 
tonian with the wave functions of any other method which employs the quasi-particle 
representation. The  random phase approximation (Baranger 1960-to be referred to 
as RPA) is of great interest in this connection, since this method in recent years is 
widely applied to the pairing Hamiltonian, in particular (Gupta 1964). Such com- 
parison enables us to evaluate the possibilities of the RPA in describing the states of 
the pairing Hamiltonian because the projected BCS states give a very good approach 
to the exact solution for the ground states of nuclei. The overlap integrals with the 
exact solutions proved to be greater than 0-99, as was shown by Kerman et al. (1961). 

2. The quasi-particle structure 
It was shown (Fomenko 1970) that the projected BCS states describing P pairs of 

particles represent a superposition of states with an even number of quasi-particles. 
The wave function of the ground state with the seniority zero has the following form: 

where 

V f  

X v i  denotes summation over all possible sets of indices ul, ..., v q  (not equal to each 
other), 10 >> is the quasi-particle vacuum, A, = CX-,CX~ where E, is the annihilation 
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quasi-particle operator, the states v and - U  being related to each other by time 
reversal. L is the total pair degeneracy of the system. Thus ] q  >> represents a 2q quasi- 
particle state. 

If q is an even number, we have for the amplitudes uq and u ~ + ~ :  

with 
yw = 2UVVY, 6, = uV2-vv2 ,  pvk = (1 -sin2Xkyw2)1'2 

f gpvk  = -6vtgXk, Rk = n p v k ,  #k = 2 Pvk + ( L  - 2P)Xk (3) 
V V 

n-k 
2(n + 1)' 

i f o r  k = 0, n + l  
1 otherwise. x k  E ___ €k = { 

The positive integer n determines the accuracy to which the projection is per- 
formed (for 2n > max(P, L-P)  the projection becomes exact). 

The  essential point to mention here is that R in (2) as a function of x has a sharp 
maximum near x = 0 if the root-mean-square particle-number fluctuation is large, 
i.e. 2 = Evyv2 1. In  this case R(x)  can be represented in the form 

1 
R ( X )  = exp( - 2 0 2 x 2 ) .  

Further, let n be infinitely large. Then the sums over k will go over into integrals 
according to the following rule : 

All the integrands we get in (2) if n +. CO contain the sharply peaked function 
R(x) and so they can be evaluated by the saddle-point method.? 

The  saddle-point approximation gives for the amplitudes : 

i The saddle-point approximation is, as a rule, good enough for the ground states of 
even-even nuclei and sufficient for the purposes of the present paper as was shown by our 
exact calculations (based on the formulae (2)) for the most troublesome cases considered here. 
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From (4)  one then obtains 

a I 2  Cvyv28y2 _ -  - 2--. 
aZ2 04 

However, according to the RPA one should have 

a12 
- << 1. 
a2 2 

One sees from (5a) that the quasi-particle admixture in the ground state cannot 
be regarded as small as is assumed in the RPA. We should emphasize that the rela- 
tion (Sa) for the vacuum and four-quasi-particle amplitudes is valid for an arbitrary 
system of particles if the root-mean-square particle-number fluctuation is large 
enough. 

I t  follows from (4a) that the amplitudes of the states with the number of quasi- 
particles multiple to four decrease rather slowly as the number of quasi-particles 
increases : 

ao2: a22: a42:  ... = 1: 4: 8: ... . (7a) 

r2s for the two-quasi-particle states, a comparison of (5b) and (6b) can be per- 

Tilie shall note that, as follows from (4b),  the weight of the states with the odd 
formed only for a concrete system. We shall discuss this question below. 

number of quasi-particle pairs increases with the number of quasi-particles : 

(7b) a12: a32: a52:  .,. = 1. . 9. 2 .  ZB. 8 .  ... . 
However, it should be emphasized that the saddle-point approximation becomes 

inapplicable when one considers a very large number of quasi-particles because of the 
quantities p V - l  in the formulae (2) which have a minimum at x = 0 and, if in large 
number, can dilute the sharp peak of the function R(x). Thus the relations (4) are 
valid only for q < L,  i.e., for the first quasi-particle components. 

In  the case of one degenerate level? the two-quasi-particle component remains in 
general. The  projected wave function has the RPA structure in this case only when 
the level is half filled, i.e. when the number of particles and holes is equal (in this 
case 6 = 0). 

In  table 1 we represent the quantity a12/u22, i.e. the ratio of the two-quasi- 
particle component to the four-quasi-particle one. The chemical potential h and the 
gap parameter A and the schemes of the single-particle levels for the nuclei given in 
table 1 are the same as those used by Kisslinger and Sorensen (1960). In  table 1 the 
relative error 8E/E in the excitation energy of the seniority-zero states (the RPA com- 
pared with exact solutions) is given (we use here the data of Gupta 1964). It can be 
seen that the error in the excitation energy obtained according to the RPA is the 
larger the worse the relation (6b) is satisfied. 

ate leyel. 
It is worth noting that the projected BCS states become exact solutions for one degener- 
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Table 1. Quasi-particle structure of the ground state 

8EIE 
Xucleus aI2 jaz2  ( 9/61 

58Ni 0.25 10 
ONi 0.10 9 

62Ni 0.07 5 
64Ni 0.09 7.5 
66Ni 0.23 9.5 

2osPb 0.59 42 

3. Conclusions 
Concluding the consideration, we can summarize that the basic assumptions of 

the RPA are rather poorly fulfilled when the ground states of the pairing model are 
treated (see (7a) and table 1)) the accuracy of one of them (neglect of the components 
with the odd number of quasi-particle pairs) being different for different nuclei. 
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